Boundedness of Oscillatory Singular Integrals on Weighted Sobolev Spaces

نویسنده

  • Li-Yuan Chen
چکیده

In this paper, an oscillatory singular integral operator T deened by T f (x) = Z IR e ixP(y) f (x ? y) y dy is showed to be bounded on a weighted Sobolev space H

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain Estimates of Oscillatory Integrals and Extrapolation

In this paper we study the boundedness properties of certain oscillatory integrals with polynomial phase. We obtain sharp estimates for these oscillatory integrals. By the virtue of these estimates and extrapolation we obtain L boundedness for these oscillatory integrals under rather weak size conditions on the kernel function. Keywords—Fourier transform, oscillatory integrals, Orlicz spaces, B...

متن کامل

Sharp Singular Adams Inequalities in High Order Sobolev Spaces

In this paper, we prove a version of weighted inequalities of exponential type for fractional integrals with sharp constants in any domain of finite measure in R. Using this we prove a sharp singular Adams inequality in high order Sobolev spaces in bounded domain at critical case. Then we prove sharp singular Adams inequalities for high order derivatives on unbounded domains. Our results extend...

متن کامل

Bounds of Singular Integrals on Weighted Hardy Spaces and Discrete Littlewood–Paley Analysis

We apply the discrete version of Calderón’s reproducing formula and Littlewood–Paley theory with weights to establish the H w → H w (0 < p < ∞) and H w → Lw (0 < p ≤ 1) boundedness for singular integral operators and derive some explicit bounds for the operator norms of singular integrals acting on these weighted Hardy spaces when we only assume w ∈ A∞. The bounds will be expressed in terms of ...

متن کامل

Weight Inequalities for Singular Integrals Defined on Spaces of Homogeneous and Nonhomogeneous Type

Optimal sufficient conditions are found in weighted Lorentz spaces for weight functions which provide the boundedness of the Calderón– Zygmund singular integral operator defined on spaces of homogeneous and nonhomogeneous type. 2000 Mathematics Subject Classification: 42B20, 42B25.

متن کامل

Boundedness of Singular Integrals in Weighted Anisotropic Product Hardy Spaces

Let Ai for i = 1, 2 be an expansive dilation, respectively, on R n and R and ~ A ≡ (A1, A2). Denote by A∞(R × R; ~ A) the class of Muckenhoupt weights associated with ~ A. The authors introduce a class of anisotropic singular integrals on R×R, whose kernels are adapted to ~ A in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992